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Optimal timing for managed relocation of species
faced with climate change
Eve McDonald-Madden1,2,3*, Michael C. Runge4,5,6, Hugh P. Possingham2,3 and Tara G. Martin1,3

Managed relocation is a controversial climate-adaptation
strategy to combat negative climate change impacts on
biodiversity. While the scientific community debates the merits
of managed relocation1–12, species are already being moved
to new areas predicted to be more suitable under climate
change13,14. To inform these moves, we construct a quantitative
decision framework to evaluate the timing of relocation in the
face of climate change. We find that the optimal timing depends
on many factors, including the size of the population, the
demographic costs of translocation and the expected carrying
capacities over time in the source and destination habitats. In
some settings, such as when a small population would benefit
from time to grow before risking translocation losses, haste is
ill advised. We also find that active adaptive management15,16 is
valuable when the effect of climate change on source habitat is
uncertain, and leads to delayed movement.

Rapid climate change is leading to shifts in the distribution of
many species17–22 and will have economic and social consequences
for human societies23,24. Predicting the impact of different climate-
change scenarios on biodiversity has been the overwhelming
focus of research effort so far21,25; far less attention has been
devoted to developing and choosing between adaptation actions for
biodiversity management.

Managed relocation (also known as assisted colonization) is
a controversial adaptation action for combating the impacts of
climate change on biodiversity1–12 and has recently been identified
as a key priority for conservation research26. Managed relocation
involves physically moving species from habitat predicted to
become unsuitable under climate change to locations where the
habitat is predicted to become suitable, but where they have
never occurred before. At present, debate is focused on whether
to undertake managed relocation, in light of its potential risks
and benefits2,5,9,11. While this debate continues, species are being
moved in anticipation of the risks of climate change13,14. There
is now an urgent need for a framework to underpin decisions
about when to implement managed relocation, a framework that
recognizes the potential for learning to reduce uncertainty and
improve future decisions.

Adecision framework formanaged relocation
We propose a decision framework for managed relocation that
includes learning. We focus on a situation where the risk of
species extinction as a result of not undertakingmanaged relocation
is considered greater than the risks to the recipient ecological
community of undertaking managed relocation9. In this case, the
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Figure 1 | Systemmodel for managed relocation. Carrying capacities in the
source (KS) and destination (KD) are shown with thick solid and dashed
lines respectively; the population size, N, is shown with a thin solid line. The
population size represents the state of the system by which decisions are
specified. Note, N can decline with KS or increase towards KS, depending on
the starting population size. The premise of managed relocation is that the
suitability of the source habitat will decline with climate change and a
destination habitat will become suitable. cS and cD represent the times at
which half the suitable habitat in the source and destination populations
are expected to be lost. The demographic cost of moving a population is
expressed as the relocation survival rate, φ. The thin dashed line represents
population change after relocation based on φ.

manager is left with the decision about when, if ever, to implement
managed relocation. We articulate several key elements of this
decision framework: the objectives, the alternative actions, the
assumptions about the system dynamics, the key uncertainties and
the role of monitoring.

Managed relocation will be invoked as an adaptation strategy to
conserve species threatened by climatic changes, so a likely objective
formanaged relocation is tomaximize the persistence of the species.
We assume that probability of persistence is a monotonically
increasing function of population size, so our explicit objective is
to maximize population size at some point in the future, T . Other
objectives, such as maximizing growth rate, are of course possible.
(For a discussion of the effect of risk tolerance, see Supplementary
text and Supplementary Figs S1 and S2.)

NATURE CLIMATE CHANGE | ADVANCE ONLINE PUBLICATION | www.nature.com/natureclimatechange 1

© 2011 Macmillan Publishers Limited.  All rights reserved. 

 

http://www.nature.com/doifinder/10.1038/nclimate1170
mailto:eve.mcdonald-madden@csiro.au
http://www.nature.com/natureclimatechange


LETTERS NATURE CLIMATE CHANGE DOI: 10.1038/NCLIMATE1170

Move

Po
pu

la
tio

n 
si

ze Move

Po
pu

la
tio

n 
si

ze

Time (years)

Move

Move

Move

Move

C
ar

ry
in

g 
ca

pa
ci

ty KS

KD

C
ar

ry
in

g 
ca

pa
ci

ty KS

KD

Time (years)

Time (years)

C
ar

ry
in

g 
ca

pa
ci

ty

KS

KD

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

0 10 20 30

0 10 20 30

10 20
Time (years)

0 30
Time (years)
10 200 30

Time (years)
10 200 30

Time (years)
10 200 30

50

100

Po
pu

la
tio

n 
si

ze

Po
pu

la
tio

n 
si

ze
Po

pu
la

tio
n 

si
ze

Po
pu

la
tio

n 
si

ze

0

150

0

50

100

150

0

50

100

150

Stay

Stay

Stay

Stay

Stay

Stay

0

50

100

150

0

50

100

150

0

50

100

150

10 20 300

Time (years)
10 20 300

Time (years)
10 20 300

a b c

d e f

g h i

Figure 2 |Optimal timing of managed relocation, as a function of population size in the source, when the change in the carrying capacity under climate
change is known. a,d,g, Known habitat carrying capacity over time in the source (KS, solid line) and destination (KD, dashed line), for three scenarios.
b,c,e,f,h,i, Optimal state- and time-dependent decision strategy for the corresponding habitat scenario when the relocation survival rate is high (φ=0.95;
b,e,h), and when the relocation survival rate is low (φ=0.3; c, f, i).

The actions that the decision-maker needs to evaluate regarding
managed relocation include whether and where to move individu-
als, which kinds of individual to move, howmany tomove, whether
to move all at once or in staggered cohorts, what methods to use
for release and whether a period of temporary captivity is required.
We examine what we believe to be the primary consideration with
respect to our uncertainty about the impacts of climatic shifts: at
what time tomove. To illustrate our framework, we assume that the
relocation involvesmoving every individual all at once. This strategy
is applicable in situations where wild populations are perilously
small (for example, California condor, Gymnogyps californianus,
and orange-bellied parrot, Neophema chrysogaster27). Our frame-
work, however, could easily be extended to consider more complex
methods of implementation such as staggeredmovement.

Predicting the consequences of alternative management strate-
gies in terms of their ability to achieve objectives requires making
explicit assumptions about the system dynamics. There are a num-
ber of assumptions that have been implicit in past discussions of
managed relocation. First, the motivation for managed relocation
is that the suitability of the current (source) habitat, for example,
population growth rate or carrying capacity, will decline over time
owing to climate change (KS(t ), Fig. 1). Second, the notion of
managed relocation assumes that there is somewhere else that will
be better for the species at some point in the future (KD(t ), Fig. 1).
Third, for managed relocation to be effective, at least one of the
source and destination sites must be suitable at any one time
(unless temporary captivity is being considered). Fourth, there is a
demographic cost to moving individuals and only a fraction, φ, will
survive and become established at the destination (Fig. 1). Fifth, the
quality of the habitat in the destination needs to be sufficiently high
that recovery of the population is feasible within the desired time
period, T ; this habitat quality could be expressed as the expected
intrinsic growth rate in the destination.

The success of a managed relocation programme hinges on these
assumptions; the difficulty is that there is likely to be considerable
uncertainty about many of these. How much and how quickly will
the source habitat decline? How much and how quickly will the
destination habitat improve?What fraction of the populationmight
die during relocation? What will be the intrinsic growth rate of the
species in the destination? Three tools are valuable in the face of this
uncertainty: predictive habitat modelling with explicit articulation
of uncertainty, for example, by coupling general circulation models
with species-specific habitat suitability models28, monitoring of key
response variables and Bayesian updating of the predictions in
light of emerging monitoring data. In the face of uncertainty, a
full-fledged decision framework should include explicit articulation
of critical uncertainties and an ongoing monitoring programme
designed to resolve that uncertainty, both key components of
adaptive management15,16,29.

Decision-making without uncertainty
We discovered that, when we are certain about how the system
will change in the future, the optimal timing of relocation is
strongly affected by the suitability of the destination site, KD,
relative to the source site, KS, the relocation survival rate, φ
(Fig. 2), and the intrinsic growth rate of the population in both
the destination and source sites. If the relocation survival rate is
high (φ = 0.95), then regardless of the number of individuals in
the population, N , we should not move our threatened species
until the carrying capacity in the source population, KS, is less
than that in the destination, KD (Fig. 2b,e,h). A small difference
in the maximum carrying capacities leads to an early crossing
point of the two habitat models (Fig. 2a, t = 7.2 yr) and a
correspondingly early optimal relocation time (Fig. 2b). An increase
in this difference (Fig. 2d) increases the time at which the source
carrying capacity falls below that of the destination (t = 11.7 yr),
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Table 1 |Trade-off table for a decision to move a population
when belief about the impact of climate change is static.

Truth Expected value

Model
No impact Impact
(KS model 1) (KS model 2)

Belief w 1−w

Stay KS
max KS

min wKS
max
+(1−w)KS

min

Action
Move KD

max KD
max KD

max

The uncertainty concerns whether the source carrying capacity will, in fact, decrease (impact) or
not (no impact). The consequences of taking a particular action, as a function of the true system
dynamics, are expressed as the expected long-term population size. The expected value of each
action is the belief-weighted average across the two system models—there is impact and there
is no impact of a changing climate. Here KS is the carrying capacity in the source area, KS

max is
the maximum carrying capacity in the source area, KD

max is the maximum carrying capacity in
the destination area and w is our belief that there is no impact of climate change on the carrying
capacity of the source population.

and therefore also increases the optimal time of relocation (Fig. 2e;
also compare Fig. 2g,h).

When there is a large demographic cost to the relocation (that
is, a low relocation survival rate, φ = 0.3), the optimal timing of
relocation is driven not only by habitat dynamics but also by the
number of individuals in the source population (Fig. 2c,f,i). When
the carrying capacity in the destination, KD

max, is high (Fig. 2a),
the timing depends largely on the population size in the source:
if the population is large, the optimal strategy calls for immediate
relocation, which allows recovery from the move to start sooner;
if the population size is small, there is an advantage in leaving
the population in the source to allow some recovery towards the
carrying capacity before incurring the relocation cost (Fig. 2c).
When the carrying capacity in the destination is much lower than
the source (Fig. 2d), there is no point introducing more individuals
than the destination can hold (Fig. 2f). Still, relative to the casewhen
the relocation survival rate is high (Fig. 2e), the timing of relocation
is earlier, to allowmore time to recover from the demographic costs
of relocation. Under all habitat suitability scenarios, below a certain
population size we should never implement managed relocation as
a result of the relatively high demographic costs of relocation.

Decision-making with uncertainty
Decision-makers are invariably uncertain about the response of
species to climate change. Incorporating uncertainty about how the
system will respond to changes in climate alters both what drives
our actions and when we should act. We capture this uncertainty
with a belief state, w . In our illustration w describes our belief
that there will be no impact of climate change on the carrying
capacity of the source population. We consider two cases: a static
case, in which the belief state is fixed and does not change over
time; and an active adaptive case, in which the belief state is
dynamic and updatedwith ongoingmonitoring data. The static case
represents a likely scenario where insufficient resources are in hand
to proceed with active adaptive management15,16,29 and instead the
best available knowledge regarding the impact of climate change is
used to informmanaged relocation.

In the static case, we assume that the future population size
is determined by the long-term carrying capacity in the final
location of the population, which is a function of both the decision
(‘stay’ or ‘move’) and the reality about the effects of climate
change (Table 1). We find that the expected long-term value of
keeping the population in the source (‘staying’) is greater than
the expected long-term value of moving when our belief in the
no-impact model is above a critical threshold: w > wc, where
wc= (KD

max
−KS

min)/(KS
max
−KS

min). In other words, if our initial
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Figure 3 |Optimal timing of managed relocation in the face of uncertainty
about the impact of climate change. a,c,e, For each scenario, there are two
potential models for the carrying capacity in the source, one in which there
is no impact of climate change (KS model 1), and one in which carrying
capacity declines with time (KS model 2). The three scenarios of decline
correspond to the scenarios in Fig. 2. b,d,f, Optimal state-, time-, and
belief-dependent decision strategy for the corresponding habitat scenario,
when the relocation success rate is low (φ=0.3).

belief in the no-impact model is greater than wc then we do not
move the species and no further decision is made. Conversely, if
our initial belief in the no-impact model is less than wc, we move
the species.

If we adopt an active adaptive management approach15, for each
year the population remains in the source habitat, our belief about
the impact of climate change will change in response to monitoring
data, specifically, to observed changes in the population size, N .
Now, because we are implementing active adaptive management,
our decisions are guided by the number of individuals in the
population, as well as our belief, w , in whether climate change is
having an impact on the carrying capacity of the source population
(Fig. 3).When the belief in the no-impactmodel is above the critical
threshold, wc, the optimal decision is to keep the population in
the source, no matter what the population size. When managed
relocation is warranted, the optimal timing of movement is driven
by our expectations about how the system will change and how
rapidly the alternativemodels of system change can be distinguished
from each other via learning (Fig. 3). When the rate of decline in
the source habitat impact model (KS model 2) is high (Fig. 3a,c),
the optimal timing of relocation is between 13 and 18 years,
depending on population size (Fig. 3b,d). This is later than in the
corresponding case of known dynamics (Fig. 2c,f) for two reasons:
first, as a bet-hedging strategy, we leave the population in the
source longer, in case the source is not being affected by climate
change; and second, we can only distinguish the alternative models
if individuals remain in the source; leaving animals in the source
population is the only way to monitor and learn in this population.
Intriguingly, the value of learning does not last forever; if 16 or
17 years have gone by, and there is not enough evidence for the
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Table 2 | Performance of three managed relocation approaches under climate change.

Initial belief in model 1 Initial belief in model 1 Initial belief in model 1

0.8 0.4 0.2
Prob. model 1 Performance metrics Case 1 Case 2 Case 3 Case 2 Case 3 Case 2 Case 3

P (extinction) 0.00 0.22 0.00 0.22 0.00 0.00 0.00
0.8 Terminal N 29.7 99.1 80.5 99.1 80.5 29.7 80.4

Freq. relocation 1.000 0.000 0.266 0.000 0.266 1.000 0.268

P (extinction) 0.00 0.63 0.00 0.63 0.00 0.00 0.00
0.4 Terminal N 29.7 99.2 53.1 99.2 53.1 29.7 53.0

Freq. relocation 1.000 0.000 0.662 0.000 0.662 1.000 0.664

P (extinction) 0.00 0.81 0.00 0.81 0.00 0.00 0.00
0.2 Terminal N 29.7 100.3 42.2 100.3 42.2 29.7 42.1

Freq. relocation 1.000 0.000 0.822 0.000 0.822 1.000 0.824

Case 1 is the time- and state-dependent strategy of Fig. 2f; case 2 is the belief-dependent strategy of Table 1; case 3 is the active adaptive strategy of Fig. 3d. Three performance metrics are shown, the
probability of extinction after 100 years, P (extinction); the mean population size at 100 years for populations that did not become extinct; terminal N and the frequency with which managed relocation
occurred, Freq. relocation. Parallel simulations were run for scenarios in which the underlying probability of the model with no impact of climate change (Prob. model 1) was 0.8, 0.4 and 0.2, and in which
the initial belief in this probability was 0.8, 0.4 and 0.2.

climate having no impact, it is best to move the population and
avoid the risk of population collapse.When the rate of decline in the
impact model (KS model 2) is slower (Fig. 3e), the optimal timing
of managed relocation is later, between 15 and 28 years (Fig. 3f). As
a result of the slower loss of habitat in the impact model, more time
is required to distinguish between the no-impact (KS model 1) and
impact (KS model 2)models throughmonitoring.

Using simulation, we compare the performance of our managed
relocation strategies (Table 2). Allowing for learning through
our active adaptive strategy (time–state–belief-dependent strategy)
outperforms our strategy where the belief is fixed (belief-dependent
strategy) and our strategy where we assume the dynamics
about climate change impacts are known (time–state-dependent
strategy). See Supplementary Information for more detail on
the simulation results.

Moving the debate fromwhether to when
The decision to move a species to a new area given the impact
of climatic change is far from simple. Indeed, predictions and
uncertainty about the effect of climate change on the source and
the destination populations, the demographic cost of relocation
and the growth rates of the population in both areas all
influence the optimal timing of managed relocation. Alternative
programme objectives (for example, maximize growth rate) and
the consideration of a different suite of actions (for example
allowing staggered movement) also may alter the optimal timing
of relocation. The counterintuitive nature of some results and the
sensitivity of the decision to these different factors highlight the
need for an explicit structure that considers the anticipated system
dynamics, uncertainty about these dynamics, and the benefits of
active learning. The framework we present provides the scaffolding
for careful analysis of managed relocation decisions.

There are additional factors thatmanagersmaywant to consider.
For example, first, the destination habitat is also likely to be
changing with time; in fact, the suitability of this habitat may
improve with time, affecting the best time tomove a species (see, for
example, Fig. 1). In an extreme case, where the destination habitat
may not become viable until after the source population is lost,
the establishment of an insurance captive population may need to
be considered as an interim strategy. Second, how the destination
habitat is changing with time may be uncertain, requiring learning
about the destination before making a decision to move the species.
Third, environmental stochasticitymay be an important dynamic to
include in the population model, particularly for highly threatened
species at low numbers. The framework we have provided could

be expanded to incorporate all these intricacies and others, and we
would expect this expansion to give rise to further novel patterns in
the optimal strategies.

Our decision science framework provides a platform to increase
our understanding of decision making in the face of climate
change. There are two key components of climate change that
are particularly challenging: management in the face of system
changes; and management in the face of uncertainty surrounding
these changes. Regarding the first challenge, we have shown that
by using time-dependent dynamic optimization methods we can
make informed decisions in the face of system change. The second
challenge has paralyzed the ability of agencies to make decisions
in a changing world, and caused some to advocate broad-based
monitoring to reduce uncertainty without any link to what should
actually be done if the systems are found to be in decline. Instead,
we have shown here that by explicitly articulating uncertainty in
the form of alternative models of system change, and evaluating the
evidence for these different models with information gained about
the system, we can make informed decisions regarding adaptation
in the face of uncertain climate change.

Methods
Once the broader risks and benefits of implementing managed relocation have
been considered, the question becomes one of optimal timing. We frame this
problem as a time-dependent Markov decision process30, and use stochastic
dynamic programming to find the optimal time to implement managed relocation,
conditional on full knowledge about the system dynamics, which in this case is the
impact of climate change on the carrying capacity of the species. We also consider
the case when we are uncertain about the system dynamics. Here, a tension may
arise between actions that are optimal given uncertainty and actions that are most
informative about uncertainty15,16; are the short-term costs of learning offset by
their long-term benefits?

To illustrate the complexity of the decision on when to relocate a species
and thus the value of a framework to aid this decision, we present the optimal
timing of relocation given that our objective is to maximize population size, the
action is to move all at once and the impact of climate change is modelled as
carrying capacity changing through time. Further, we present the changes in this
optimal strategy that occur when we vary the specified parameters within the
framework (for example, the parameters within the models of carrying capacity
and demographic cost of relocation). A detailed description of the methods can be
found in Supplementary Information.
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